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Cluster diffusion at the gelation point
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We use molecular dynamics simulations to study a model of the gelation transition with a dynamic bond
forming procedure. After establishing evidence for three-dimensi@mjl percolation as the static universality
class, we turn our attention to the dynamics of clusters at the gelation point, focusing in particular on the
behavior of the diffusion constab(s) as a function of cluster size We find a very clear power law behavior
D(s)~s ¥ with a nontrivial exponenk~0.69.
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[. INTRODUCTION dius of gyration of the clusters as a function of cluster size at
the gelation point allowing us to determine the fractal dimen-
Gelation is a phenomenon that continues to receive widsion. In Sec. IV we focus on the behavior of the self-

interest in the physics communifg—3]. It is a problem with  diffusion constant of clusters at the gelation point, a quantity
relevance both from a fundamental physics point of view, buthat has hitherto received little attenti¢gsee, however, Ref.
also from a more application oriented view due to the manyt7]). Finally in Sec. V we give our conclusions.
uses of gels in industry. Despite a long-standing effort the
underlying physics has still not received a complete explana- Il. MODEL

tion, in particular as far as the dynamical quantities are con- . 3
cerned. Our system is composed &=L~ (L=10, 15, and 20)

In a solution of polyfunctional monomers irreversible particles inte_racting pairwise through the shifted Lennard-
chemical bonds may be formed via some external influencelones potential
e.g., irradiation withy rays[4,5]. As the densityp of bonds
increases, the resulting macromolecules grow larger and ()= ULi(r)—U(2.50), r<2.50 @
larger, until at a critical densitp. (the gelation pointthere 0, otherwise,
is a cluster spanning the entire system, and a gel has formed.
There are a number of static/thermodynamic quantities chawhereU ,(r) =4¢[ (o/r)*?— (o/r)®]. All of our simulations
acterizing this transition, e.g., cluster size distribution, largesare 3D constant energy simulations corresponding to an av-
cluster, correlation length, and radius of gyration, that inerage temperature dkgT/e~1 and density®=0.80"3.
many cases are believed to be well described by the thred-hese choices ensure that the system is in the liquid-phase
dimensional(3D) percolation universality clag$]. Besides region of the phase diagraf8]. We use periodic boundary
the appearance of a wide distribution of cluster sizes, theonditions and a time step of magnitude=0.004/mo?/e.
presence of the gel fundamentally changes many of the dyFrom a typical equilibrium state of this liquid we let the
namic properties as well. For example, it has been found thagarticles form permanent chemical bonds if they come closer
the viscosity 7 diverges as §.—p) S when p—p., but  than r,=2Ys~1.12 [coinciding with the minimum of
there is still no general agreement on the value of the expdd(r)], and the corresponding bond interaction is represented
nents. However, there are many other quantities that probésy a harmonic oscillator potentidl 1) = 1/2kr?; in our
the unique dynamics at the gelation point, and here we corsimulations we také&o?/e=120. Note that this way of add-
sider, among other things, the diffusion of clusters of differ-ing bonds breaks energy conservation; indeed we actually
ent sizes. Diffusion in general is well known to be sensitivepump energy into the system when adding bonds. With this
to geometry and topology as well as to the interactions withhonding procedure cross linking is very fast—the average
the environment, and in the case of gelation we expect thdistance between the particles is comparabie. tcso a large
motion of the individual macromolecules to be strongly af-number of particles will be available for bonding at a given
fected by their interaction with other macromolecules with ainstant. Each particle can bond to a totalfef6 other par-
wide distribution of sizes. ticles, and the cross link densityis then given in terms of
Here we consider a model for polycondensation; usinghe number of bonds as p=2n/fN. Any number of par-
molecular dynamics we simulate a solution of hexafunctionaticles, if fulfilling the conditions above, can be cross linked
monomers interacting via the Lennard-Jones potential anger time step, but we halt the bond formation wiparaches
allow the particles to form permanent chemical bonds if theya predetermined value.
get close enough. After defining the model in Sec. Il, we

determine the static universality class by considering the be- Il STATIC UNIVERSALITY CLASS
havior of several characteristic structural quantities aided by '
finite size scaling in Sec. lll. Here we also measure the ra- We begin by examining the geometric structure resulting

from the cross linking procedure described above. First we
need to know the location of the geometric percolation point
*Email address: sjespers@sfu.ca p., and to this end we measure the fract\WiL,p) of per-
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FIG. 1. Fraction of system&V(L,p), percolating in the direc- FIG. 3. Here we plot the cluster size distributioris) as a

tion as a function op and for three different system sizes as indi- function ofs for the same three system sizegatp. and based on
cated on the plot. The lines are guides for the eye. We estimate 5000 samples. The straight line is a fit to a power law to the data
=0.2565. from theL=20 system.

colating (in one directiop systems of siz&=L3 at a given W(L,p)=f(LY"(p—p.)), )
cross link densityp. In this context a system is considered
percolating when a cluster connects a particle in the centrgiheref(x) is a scaling function with the following limiting
computational box with its image in an adjacent box, and the,g|yes:
corresponding cluster is called a spanning cluster. In the limit
N—o, W(L,p) becomes the Heaviside step functiétp imf(x)=1 and lim f(x)=0. (3)
—p.). However, at finiteN for any p>0 belowp., some X0 X —
realizations will contain a spanning cluster, and thus
W(L,p)>0. Similar reasoning allows us to conclude thatTo test this hypothesis we replot the data Y(L,p) from
W(L,p)<1 for p>p.. If we make the assumption that Fig. 1 in Fig. 2 as a function oLY"(p—p.) with p.
W(L,p) converges monotonically té(p—p.) for fixed p, it =0.2565 as determined above ane0.9. The curves col-
follows that forL,;>L,, W(L,p)<W(L,,p) if p<p., and lapse quite convincingly onto the same master curve with the
likewise W(L1,p)>W(L,,p) for any p>p.. Thereforeat limiting values given in Eq.(3), and the results are thus
and only at p the curves of W(L,p) coincide, i.e., consistent with finite scaling theory. Moreover, the value of
W(L,p.)=const. In Fig. 1 we plowW(L,p) obtained from v is in very good agreement with the correlation length ex-
5000 realizations as a function pffor L=10, 15, and 20, ponent 0.88 of 3D percolation theof§,9]. Thus we believe
and we see that all the curves cross approximately at ththat in spite of using an off-lattice dynamic bonding method
same point: the value op. determined this way igp.  from an equilibrium liquid state, this system belongs to the
=0.2565. universality class of 3D percolation. To further substantiate
Finite size scaling theory predicts that(L,p) does not that claim, we have also considered the cluster size distribu-
depend orlL and p separately but only on the combination tion at the critical poinfo=p. in Fig. 3. According to stan-
L/& (and the sign op—p.) whereé=|p—p.| ™" is the cor-  dard percolation theory the numbefs) of clusters of sizes

relation length andv the correlation length exponefh®]. is a power lawn(s)~s~ " with an exponentr~2.18[10].
Thus we may write Fitting the data from the largest system size to a power law
1 = v
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FIG. 2. Same as Fig. 1, except hang(L,p) is plotted as a FIG. 4. Scaling plot of the weight average molecular weight
function of L¥*(p—p,) with p.=0.2565 andv=0.9. The data col- M,,. The quality of the data collapse confirnys=1.74 in accor-
lapse very nicely in agreement with finite size scaling theory. dance with the 3D percolation value.
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100 mined previously. Again there is a very nice data collapse
reinforcing our statement about the validity of 3D percola-
tion exponents.

The last static exponent we wish to consider is the fractal
dimensionD of the clusters at the gelation point. During the
simulations we maintain a list of all particles belonging to a
given cluster, and this enables us to calculate the radius of
gyration of a given cluster. At a given instaRy(s) (s=2) is
found from Ref.[12],

10k

Ri(s)/0®

0.1

R = 5o 1) E (ri=r)?, (6)
I
FIG. 5. Radius of gyrationR, (squareglas a function of cluster
sizes for L=20 andp=p;.

where the sum is over all particles in the cluster anig the

we find the exponent~2.19, which is within 0.5% of the position of particlei at that instant. To calculate its thermal
3D percolation value quoted above. average we average over time. However, we have also aver-

For the universality class of 3D percolation there are indged over 100 samples to get better statistics for the indi-
principle only two independent exponents, but to establistyidual cluster sizes. We find that the results are independent
even more confidence in our conclusions and because wef the system siz€up to a cutoff and do not significantly
need part of the data later, we determine two more expodepend on the value gf close top., and therefore we plot
nents. here only the results from the largest system, s 20°.

The weight average molecular mads, for p<p. defines  We focus on the properties of the system at the percolation
the exponenty by the relationM,,~(p.—p) ~?. Again, for  point p=p, and the corresponding data are plotted in Fig. 5.
finite systems, finite size scaling theory predicts the scaling There is a clear power law behawﬁiz(s) s?P  and
form from a least squares fit we deduce the vz{IUeZ 38. HereD

M,,= Ly/ug(LuV(pc_ ), 4) is the fractal dimension of the clusteisinces~ Rg) at the
gelation point, and for this exponenD3percolation theory
where g(x) is a scaling function with the following predicts the valu®~2.5. Our value is about 5% lower, but

asymptotic behavior: this small discrepancy may be due to lack of data for suffi-
ciently larges. However, it may also be due to the interaction
X7, X—® of the polymers with one another and with the leftover

9 )w{const, x—0. © monomers.

Therefore regarding the static exponents we presented
Therefore we comput®l,, as a function ofp for different  evidence that our model of the gelation transition, which
system sizes, and in Fig. 4 we plot the results in the form otises a Lennard-Jones force-shifted intermolecular potential
M, /L"" versusLY"(p.—p) with y=1.74 being the ex- and a liquid state bond forming procedure, is consistent with
pected 3D percolation valué®,11] and » and p. as deter- the universality class of 3D percolation.
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FIG. 6. Mean square displacements divided by time for the individual clusters dfi+h20° system atp=p,. (&) Clusters of size
1,...,29from top to bottom. The asymptotic convergence to horizontal lines indicates normal diffusion, ¢7).Ef) Close up of(a) for
the four largest clusters. They have all reached an almost constant value, except perhaps the largest cluster, that therefore represents th
“worst case.”
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~ FIG. 7. Diffusion constanb(s) as a function of the mass(or FIG. 8. Diffusion constant as a function of radius of gyration for
size of the cluster for theN=20° system aip=p,. The solid line N=20% andp=p
..

is a power laws~ %% obtained from a least squares fit to the data in
the region[3:30].

D(Rg)~s 2%%~R; **P=R:*, and the corresponding data
IV. CLUSTER DIFFUSION are plotted in Fig. 8. Also shown is a power law fit to the
) data yielding an exponential value of 1.63. Again we empha-
We now turn to the measurement of a dynamic clustekjze the clear deviation from a Stokes-type laB(R,)
specific quantity, namely, the diffusion coefficiéd(s) as a ~Ry*, as obtained from the Zimm dynamics for polymers.
function of cluster sizes at the percolation thresholp  nigreqver our result is in sharp contrast to a corresponding
=pc. We measure the mean square fluctuations of thagyltin a recent papét4] for a lattice model of gelation in

center-of-mass positioRg™(t) for each cluster of siz&,  \/hich it was found thaD(Rg)NR—ZA using bond fluctua-
and for large times we find a linear behavior tion dynamics. g

([RE™(O—R™(0)]?)~6D(S)t, @) V. CONCLUSIONS
allowing us to extract the diffusion constab{(s) as a func- Using extensive molecular dynamics simulations of a sys-
tion of cluster mass. Again the averagé- - -) is performed  tem of Lennard-Jones particles we studied a specific model
over both time(thermal averageand over realizations, and for the gelation transition. An important feature of our model
here we have found it sufficient to use 80 samples. is that particles are allowed to form permanent chemical
To demonstrate the asymptotic normal diffusion webonds from the Lennard-Jones liquid state when they get
plot for the N=20° system in Fig. €) ([RS™(t) close together. For this model we determined a number of
—RS™(0)]12)/t as a function of time steps for several clusterexponents characterizing the geometry and polydispersity of
sizess=1,...,29, andpart (b) shows a magnification for the system, and this information allowed us to conclude that
the largest clusters af=26, .. .,29. As can beeen all the 3D percolation theory is the appropriate static universality
curves approach constant values for large times, and it islass. We went on to discuss the radius of gyration of the
from these values that we calculate the diffusion constantlusters at the gel point resulting in the determination of their
using Eq.(7). We have checked that the results below do noffractal dimension. Afterwards we focused on the self-
change if we extend the length of the sampling time to muctdliffusion constant of individual clusters as a function of their
longer times(5000 time steps size. We found strong indications for a power law behavior
For monodisperse polymers in a dilute solution, Rousewith an exponent described neither by Rouse nor by Zimm
dynamics predicts the power law dependefizgs)~s~ 1. dynamics. In future work we intend to study, e.g., the shear
Taking hydrodynamic interactions into account, Zimm dy- viscosity of this model in order to measure the corresponding
namics predictsD(s)~R,'~s "P=s7%4 [13]. For the dynamic exponents. As mentioned in the Introduction there
present model we observe a very clear power |BWs) is a considerable disagreement as to the values of these ex-
~s7% as can be seen in Fig. 7, where we have plobés) ponents, and numerical results for models such as the present
as a function ot. We consider again On|y the |argest Systemone will allow us to discriminate between some of the pro-
sizeN=20° at p=p., andD(s) is found from Eq(7) based posed dynamic universality classes for gelation.
on the data from Fig. 6. The exponent of the power law is
approximatelyjk~0.69, and is thus described neither by pure
Rouse nor by Zimm dynamics. Instead, the exponent is
intermediate between the values for Rouse and Zimm The author wishes to thank M. Plischke and D. Vernon for
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