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Cluster diffusion at the gelation point
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~Received 22 April 2002; revised manuscript received 15 May 2002; published 12 September 2002!

We use molecular dynamics simulations to study a model of the gelation transition with a dynamic bond
forming procedure. After establishing evidence for three-dimensional~3D! percolation as the static universality
class, we turn our attention to the dynamics of clusters at the gelation point, focusing in particular on the
behavior of the diffusion constantD(s) as a function of cluster sizes. We find a very clear power law behavior
D(s);s2k with a nontrivial exponentk'0.69.
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I. INTRODUCTION

Gelation is a phenomenon that continues to receive w
interest in the physics community@1–3#. It is a problem with
relevance both from a fundamental physics point of view,
also from a more application oriented view due to the ma
uses of gels in industry. Despite a long-standing effort
underlying physics has still not received a complete expla
tion, in particular as far as the dynamical quantities are c
cerned.

In a solution of polyfunctional monomers irreversib
chemical bonds may be formed via some external influen
e.g., irradiation withg rays @4,5#. As the densityp of bonds
increases, the resulting macromolecules grow larger
larger, until at a critical densitypc ~the gelation point! there
is a cluster spanning the entire system, and a gel has form
There are a number of static/thermodynamic quantities c
acterizing this transition, e.g., cluster size distribution, larg
cluster, correlation length, and radius of gyration, that
many cases are believed to be well described by the th
dimensional~3D! percolation universality class@6#. Besides
the appearance of a wide distribution of cluster sizes,
presence of the gel fundamentally changes many of the
namic properties as well. For example, it has been found
the viscosityh diverges as (pc2p)2s when p→pc , but
there is still no general agreement on the value of the ex
nents. However, there are many other quantities that pro
the unique dynamics at the gelation point, and here we c
sider, among other things, the diffusion of clusters of diff
ent sizes. Diffusion in general is well known to be sensit
to geometry and topology as well as to the interactions w
the environment, and in the case of gelation we expect
motion of the individual macromolecules to be strongly
fected by their interaction with other macromolecules with
wide distribution of sizes.

Here we consider a model for polycondensation; us
molecular dynamics we simulate a solution of hexafunctio
monomers interacting via the Lennard-Jones potential
allow the particles to form permanent chemical bonds if th
get close enough. After defining the model in Sec. II,
determine the static universality class by considering the
havior of several characteristic structural quantities aided
finite size scaling in Sec. III. Here we also measure the
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dius of gyration of the clusters as a function of cluster size
the gelation point allowing us to determine the fractal dime
sion. In Sec. IV we focus on the behavior of the se
diffusion constant of clusters at the gelation point, a quan
that has hitherto received little attention~see, however, Ref
@7#!. Finally in Sec. V we give our conclusions.

II. MODEL

Our system is composed ofN5L3 (L510, 15, and 20)
particles interacting pairwise through the shifted Lenna
Jones potential

U~r !5H ULJ~r !2ULJ~2.5s!, r<2.5s

0, otherwise,
~1!

whereULJ(r )54e@(s/r )122(s/r )6#. All of our simulations
are 3D constant energy simulations corresponding to an
erage temperature ofkBT/e'1 and densityF50.8s23.
These choices ensure that the system is in the liquid-ph
region of the phase diagram@8#. We use periodic boundary
conditions and a time step of magnitudedt50.004Ams2/e.
From a typical equilibrium state of this liquid we let th
particles form permanent chemical bonds if they come clo
than r c521/6s'1.12 @coinciding with the minimum of
U(r )#, and the corresponding bond interaction is represen
by a harmonic oscillator potentialUharm(r )51/2kr2; in our
simulations we takeks2/e5120. Note that this way of add
ing bonds breaks energy conservation; indeed we actu
pump energy into the system when adding bonds. With
bonding procedure cross linking is very fast—the avera
distance between the particles is comparable tor c , so a large
number of particles will be available for bonding at a giv
instant. Each particle can bond to a total off 56 other par-
ticles, and the cross link densityp is then given in terms of
the number of bondsn as p52n/ f N. Any number of par-
ticles, if fulfilling the conditions above, can be cross linke
per time step, but we halt the bond formation whenp reaches
a predetermined value.

III. STATIC UNIVERSALITY CLASS

We begin by examining the geometric structure result
from the cross linking procedure described above. First
need to know the location of the geometric percolation po
pc , and to this end we measure the fractionW(L,p) of per-
©2002 The American Physical Society02-1
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colating ~in one direction! systems of sizeN5L3 at a given
cross link densityp. In this context a system is considere
percolating when a cluster connects a particle in the cen
computational box with its image in an adjacent box, and
corresponding cluster is called a spanning cluster. In the l
N→`, W(L,p) becomes the Heaviside step functionu(p
2pc). However, at finiteN for any p.0 below pc , some
realizations will contain a spanning cluster, and th
W(L,p).0. Similar reasoning allows us to conclude th
W(L,p),1 for p.pc . If we make the assumption tha
W(L,p) converges monotonically tou(p2pc) for fixed p, it
follows that forL1.L2 , W(L1 ,p),W(L2 ,p) if p,pc , and
likewise W(L1 ,p).W(L2 ,p) for any p.pc . Thereforeat
and only at pc the curves of W(L,p) coincide, i.e.,
W(L,pc)5const. In Fig. 1 we plotW(L,p) obtained from
5000 realizations as a function ofp for L510, 15, and 20,
and we see that all the curves cross approximately at
same point: the value ofpc determined this way ispc
50.2565.

Finite size scaling theory predicts thatW(L,p) does not
depend onL and p separately but only on the combinatio
L/j ~and the sign ofp2pc) wherej5up2pcu2n is the cor-
relation length andn the correlation length exponent@9#.
Thus we may write

FIG. 2. Same as Fig. 1, except hereW(L,p) is plotted as a
function ofL1/n(p2pc) with pc50.2565 andn50.9. The data col-
lapse very nicely in agreement with finite size scaling theory.

FIG. 1. Fraction of systems,W(L,p), percolating in thex direc-
tion as a function ofp and for three different system sizes as ind
cated on the plot. The lines are guides for the eye. We estimatpc

50.2565.
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W~L,p!5 f ~L1/n~p2pc!!, ~2!

where f (x) is a scaling function with the following limiting
values:

lim
x→`

f ~x!51 and lim
x→2`

f ~x!50. ~3!

To test this hypothesis we replot the data forW(L,p) from
Fig. 1 in Fig. 2 as a function ofL1/n(p2pc) with pc
50.2565 as determined above andn50.9. The curves col-
lapse quite convincingly onto the same master curve with
limiting values given in Eq.~3!, and the results are thu
consistent with finite scaling theory. Moreover, the value
n is in very good agreement with the correlation length e
ponent 0.88 of 3D percolation theory@6,9#. Thus we believe
that in spite of using an off-lattice dynamic bonding meth
from an equilibrium liquid state, this system belongs to t
universality class of 3D percolation. To further substanti
that claim, we have also considered the cluster size distr
tion at the critical pointp5pc in Fig. 3. According to stan-
dard percolation theory the numbern(s) of clusters of sizes
is a power lawn(s);s2t with an exponentt'2.18 @10#.
Fitting the data from the largest system size to a power

FIG. 3. Here we plot the cluster size distributionn(s) as a
function ofs for the same three system sizes atp5pc and based on
5000 samples. The straight line is a fit to a power law to the d
from theL520 system.

FIG. 4. Scaling plot of the weight average molecular weig
Mw . The quality of the data collapse confirmsg51.74 in accor-
dance with the 3D percolation value.
2-2
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we find the exponentt'2.19, which is within 0.5% of the
3D percolation value quoted above.

For the universality class of 3D percolation there are
principle only two independent exponents, but to estab
even more confidence in our conclusions and because
need part of the data later, we determine two more ex
nents.

The weight average molecular massMw for p,pc defines
the exponentg by the relationMw;(pc2p)2g. Again, for
finite systems, finite size scaling theory predicts the sca
form

Mw5Lg/ng~L1/n~pc2p!!, ~4!

where g(x) is a scaling function with the following
asymptotic behavior:

g~x!;H x2g, x→`

const, x→0.
~5!

Therefore we computeMw as a function ofp for different
system sizes, and in Fig. 4 we plot the results in the form
Mw /Lg/n versusL1/n(pc2p) with g51.74 being the ex-
pected 3D percolation value@9,11# and n and pc as deter-

FIG. 5. Radius of gyrationsRg ~squared! as a function of cluster
sizes for L520 andp5pc .
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mined previously. Again there is a very nice data collap
reinforcing our statement about the validity of 3D perco
tion exponents.

The last static exponent we wish to consider is the frac
dimensionD of the clusters at the gelation point. During th
simulations we maintain a list of all particles belonging to
given cluster, and this enables us to calculate the radiu
gyration of a given cluster. At a given instantRg(s) (s>2) is
found from Ref.@12#,

Rg
2~s!5

1

s~s21! (
i , j 51

s

~r i2r j !
2, ~6!

where the sum is over all particles in the cluster andr i is the
position of particlei at that instant. To calculate its therm
average we average over time. However, we have also a
aged over 100 samples to get better statistics for the i
vidual cluster sizes. We find that the results are independ
of the system size~up to a cutoff! and do not significantly
depend on the value ofp close topc , and therefore we plot
here only the results from the largest system, i.e.,N5203.
We focus on the properties of the system at the percola
point p5pc and the corresponding data are plotted in Fig.

There is a clear power law behaviorRg
2(s);s2/D, and

from a least squares fit we deduce the valueD52.38. HereD
is the fractal dimension of the clusters~sinces;Rg

D) at the
gelation point, and for this exponent 3D percolation theory
predicts the valueD'2.5. Our value is about 5% lower, bu
this small discrepancy may be due to lack of data for su
ciently larges. However, it may also be due to the interactio
of the polymers with one another and with the leftov
monomers.

Therefore regarding the static exponents we presen
evidence that our model of the gelation transition, whi
uses a Lennard-Jones force-shifted intermolecular pote
and a liquid state bond forming procedure, is consistent w
the universality class of 3D percolation.
resents the
FIG. 6. Mean square displacements divided by time for the individual clusters of theN5203 system atp5pc . ~a! Clusters of size
1, . . . ,29from top to bottom. The asymptotic convergence to horizontal lines indicates normal diffusion, cf. Eq.~7!. ~b! Close up of~a! for
the four largest clusters. They have all reached an almost constant value, except perhaps the largest cluster, that therefore rep
‘‘worst case.’’
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IV. CLUSTER DIFFUSION

We now turn to the measurement of a dynamic clus
specific quantity, namely, the diffusion coefficientD(s) as a
function of cluster sizes at the percolation thresholdp
5pc . We measure the mean square fluctuations of
center-of-mass positionRs

c.m.(t) for each cluster of sizes,
and for large times we find a linear behavior

^@Rs
c.m.~ t !2Rs

c.m.~0!#2&;6D~s!t, ~7!

allowing us to extract the diffusion constantD(s) as a func-
tion of cluster masss. Again the averagê•••& is performed
over both time~thermal average! and over realizations, an
here we have found it sufficient to use 80 samples.

To demonstrate the asymptotic normal diffusion w
plot for the N5203 system in Fig. 6~a! ^@Rs

c.m.(t)
2Rs

c.m.(0)#2&/t as a function of time steps for several clus
sizess51, . . . ,29, andpart ~b! shows a magnification fo
the largest clusters ofs526, . . . ,29. As can beseen all the
curves approach constant values for large times, and
from these values that we calculate the diffusion cons
using Eq.~7!. We have checked that the results below do
change if we extend the length of the sampling time to mu
longer times~5000 time steps!.

For monodisperse polymers in a dilute solution, Rou
dynamics predicts the power law dependenceD(s);s21.
Taking hydrodynamic interactions into account, Zimm d
namics predictsD(s);Rg

21;s21/D5s20.4 @13#. For the
present model we observe a very clear power law,D(s)
;s2k, as can be seen in Fig. 7, where we have plottedD(s)
as a function ofs. We consider again only the largest syste
sizeN5203 at p5pc , andD(s) is found from Eq.~7! based
on the data from Fig. 6. The exponent of the power law
approximatelyk'0.69, and is thus described neither by pu
Rouse nor by Zimm dynamics. Instead, the exponen
intermediate between the values for Rouse and Zim
dynamics.

Having measured the radius of gyration in Fig. 5, we c
convert the above result into a dependence ofD on Rg ,

FIG. 7. Diffusion constantD(s) as a function of the masss ~or
size! of the cluster for theN5203 system atp5pc . The solid line
is a power laws20.69 obtained from a least squares fit to the data
the region@3:30#.
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D(Rg);s20.69;Rg
20.69D5Rg

1.64, and the corresponding dat
are plotted in Fig. 8. Also shown is a power law fit to th
data yielding an exponential value of 1.63. Again we emp
size the clear deviation from a Stokes-type law,D(Rg)
;Rg

21 , as obtained from the Zimm dynamics for polyme
Moreover our result is in sharp contrast to a correspond
result in a recent paper@14# for a lattice model of gelation in
which it was found thatD(Rg);Rg

22.4 using bond fluctua-
tion dynamics.

V. CONCLUSIONS

Using extensive molecular dynamics simulations of a s
tem of Lennard-Jones particles we studied a specific mo
for the gelation transition. An important feature of our mod
is that particles are allowed to form permanent chemi
bonds from the Lennard-Jones liquid state when they
close together. For this model we determined a numbe
exponents characterizing the geometry and polydispersit
the system, and this information allowed us to conclude t
3D percolation theory is the appropriate static universa
class. We went on to discuss the radius of gyration of
clusters at the gel point resulting in the determination of th
fractal dimension. Afterwards we focused on the se
diffusion constant of individual clusters as a function of th
size. We found strong indications for a power law behav
with an exponent described neither by Rouse nor by Zim
dynamics. In future work we intend to study, e.g., the sh
viscosity of this model in order to measure the correspond
dynamic exponents. As mentioned in the Introduction th
is a considerable disagreement as to the values of these
ponents, and numerical results for models such as the pre
one will allow us to discriminate between some of the p
posed dynamic universality classes for gelation.
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FIG. 8. Diffusion constant as a function of radius of gyration f
N5203 andp5pc .
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